### Top Posts

### Recent comments

- Tim Penttila on A rant
- Tim Penttila on A rant
- Peter Cameron on A rant
- Dima on Oligomorphic groups: topology or geometry?
- G. Smith on The symmetric group, 1

### Blogroll

- Astronomy Picture of the Day
- Azimuth
- British Combinatorial Committee
- Comfortably numbered
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Jane's London
- Jon Awbrey
- Kourovka Notebook
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Ratio bound
- Robert A. Wilson's blog
- Since it is not …
- Spitalfields life
- Sylvy's mathsy blog
- SymOmega
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: transversals

## The existential transversal property

One of the first things that João Araújo introduced me to when we started collaborating, after synchronization, was the universal transversal property: a permutation group G on the set {1,…,n} has the k-universal transversal property (k-ut for short) if, given … Continue reading

Posted in exposition
Tagged partitions, permutation groups, regular semigroups, transversals
Leave a comment

## ACCMCC, Days 4 and 5

Penny Haxell opened proceedings on Thursday with her astonishing work with Ron Aharoni. They give a sufficient condition for a tripartite 3-uniform hypergraph (one whose vertex set is partitioned into three parts so that each hyperedge contains one vertex from … Continue reading

Posted in events
Tagged affine planes, Latin squares, Markov chains, switching, synchronization, transversals, Tutte polynomial
1 Comment

## A cliff

The “combinatorial explosion” is a well-known phenomenon. I recently came across a very dramatic example of it. I was trying to compute the function F(n,k), defined to be the maximum of |S|×|P|, over all sets S of k-subsets and all … Continue reading

Posted in exposition
Tagged combinatorial explosion, computers, GAP, GRAPE, Leonard Soicher, partitions, subsets, transversals
4 Comments

## Subsets and partitions

There are several packing and covering problems for subsets of a set, which have been worked over by many people. For example, given t, k and n, how many k-subsets of an n-set can we pack so that no t-subset … Continue reading

Posted in mathematics, open problems
Tagged primitivity, sections, semigroups, transversals
1 Comment

## Diamond squares

If you like Latin squares and such things, take a look at Diamond Geezer’s post for today: a pair of orthogonal Latin squares with two disjoint common transversals, and some entries given (if you do the harder puzzle).