### Top Posts

### Recent comments

- Dima on Right to Work
- Igor Dolinka on Right to Work
- Peter Cameron on Right to Work
- Yemon Choi on Right to Work
- uhmmartin on Right to Work

### Blogroll

- Alexander Konovalov
- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- CIRCA tweets digest
- CoDiMa
- Coffee, love, and matrix algebra
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Machines like us
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- Sylvy's mathsy blog
- SymOmega
- Tangential thoughts
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: primitive groups

## 9,21,27,45,81,153,…

This is the sequence of degrees of primitive groups which don’t synchronize a map of rank 3, equivalently graphs with clique number and chromatic number 3 having primitive automorphism groups. You could argue that the sequence should start with 3, … Continue reading

## Butterflies

I am in Lisbon working with João Araújo and Wolfram Bentz on synchronization. We say that a permutation group G on the set {1,…n} synchronizes a non-permutation f from this set to itself if the semigroup generated by G and … Continue reading

## Easy to state, hard to solve?

I described here how Pablo Spiga and I showed that all but finitely many nontrivial switching classes of graphs with primitive automorphism group contain a graph with trivial automorphism group, and found the six exceptions. (The trivial switching classes are … Continue reading

Posted in exposition, open problems
Tagged graphs, homomorphisms, primitive groups, rigid graphs, switching classes, tournaments
Leave a comment

## Automorphism groups of hypergraphs

I am getting old and forgetful, but I don’t think I said anything here about this problem yet. If I did, apologies for the repetition – but there is something new to report! In April, Laci Babai and I finally … Continue reading

Posted in exposition, mathematics
Tagged Akos Seress, hypergraphs, Laci Babai, Pablo Spiga, primitive groups
Leave a comment

## A thrifty algorithm

Two important classical parameters of a permutation group G of degree n are the base size, the smallest size of a collection of points whose pointwise stabiliser is the identity; and the minimal degree, the smallest number of points moved … Continue reading

Posted in exposition, open problems
Tagged base size, greedy algorithm, Kenneth Blaha, minimal degree, permutation groups, primitive groups
4 Comments

## Primitive graphs

A primitive graph is one whose automorphism group acts primitively on the vertices: that is, the group is transitive on the vertices, and there is no non-trivial equivalence relation which it preserves. This post is not about why primitive graphs … Continue reading