### Top Posts

### Recent comments

- Peter Cameron on Apology
- Robin Whitty on Apology
- Peter Cameron on Isbell’s Conjecture
- Sean Eberhard on Isbell’s Conjecture
- Sean Eberhard on Isbell’s Conjecture

### Blogroll

- Alexander Konovalov
- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- CIRCA tweets digest
- CoDiMa
- Coffee, love, and matrix algebra
- Collecting reality
- Comfortably numbered
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- Kourovka Notebook
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Ratio bound
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- Sylvy's mathsy blog
- SymOmega
- Tangential thoughts
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- Vynmath
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: primitive groups

## Automorphism groups of transformation semigroups

I have been in the transformation semigroups game for nearly ten years now, but I still feel that I am finding my feet. Here is apparently a huge difference between permutation groups and transformation semigroups, one which is still not … Continue reading

Posted in doing mathematics, open problems, Uncategorized
Tagged automorphism, primitive groups, synchronization
Leave a comment

## Road closures and idempotent-generated semigroups

The University of St Andrews is installing a biomass boiler, to provide hot water to heat University buildings, on the old paper mill site at Guardbridge. The water has to be piped four miles to St Andrews, and this big … Continue reading

## 9,21,27,45,81,153,…

This is the sequence of degrees of primitive groups which don’t synchronize a map of rank 3, equivalently graphs with clique number and chromatic number 3 having primitive automorphism groups. You could argue that the sequence should start with 3, … Continue reading

## Butterflies

I am in Lisbon working with João Araújo and Wolfram Bentz on synchronization. We say that a permutation group G on the set {1,…n} synchronizes a non-permutation f from this set to itself if the semigroup generated by G and … Continue reading

## Easy to state, hard to solve?

I described here how Pablo Spiga and I showed that all but finitely many nontrivial switching classes of graphs with primitive automorphism group contain a graph with trivial automorphism group, and found the six exceptions. (The trivial switching classes are … Continue reading

Posted in exposition, open problems
Tagged graphs, homomorphisms, primitive groups, rigid graphs, switching classes, tournaments
Leave a comment

## Automorphism groups of hypergraphs

I am getting old and forgetful, but I don’t think I said anything here about this problem yet. If I did, apologies for the repetition – but there is something new to report! In April, Laci Babai and I finally … Continue reading

Posted in exposition, mathematics
Tagged Akos Seress, hypergraphs, Laci Babai, Pablo Spiga, primitive groups
Leave a comment

## A thrifty algorithm

Two important classical parameters of a permutation group G of degree n are the base size, the smallest size of a collection of points whose pointwise stabiliser is the identity; and the minimal degree, the smallest number of points moved … Continue reading

Posted in exposition, open problems
Tagged base size, greedy algorithm, Kenneth Blaha, minimal degree, permutation groups, primitive groups
4 Comments

## Primitive graphs

A primitive graph is one whose automorphism group acts primitively on the vertices: that is, the group is transitive on the vertices, and there is no non-trivial equivalence relation which it preserves. This post is not about why primitive graphs … Continue reading