Tag Archives: permutation groups

Summer school at Marienheide

Last week, I was lecturing at a summer school in Franz Dohrmann Haus, a very pleasant conference centre in the small town of Marienheide, not far from Köln. Apart from a walk on Wednesday afternoon, I didn’t get much exercise, … Continue reading

Posted in events | Tagged , , , , | Leave a comment

A week in Vienna

Last week, in the second week of Spring break in St Andrews, I was in Vienna, giving a course of lectures to the PhD students, at the invitation of Tomack Gilmore, a Queen Mary undergraduate now finishing his PhD with … Continue reading

Posted in events, Lecture notes, Uncategorized | Tagged , , , , , , , , | 4 Comments

12160

12160 is an interesting number; but I didn’t know that until last night. As part of the work on semigroups, we are looking at the following problem. Given n and k, with n ≥ 2k, suppose that G is a k-homogeneous subgroup … Continue reading

Posted in doing mathematics, exposition | Tagged , , | 3 Comments

Permutation groups and transformation semigroups

When I first decided to apply to the LMS to run a Durham symposium on Permutation Groups and Transformation Semigroups, I had a fairly clear idea of what I wanted: topics (both finite and infinite) where the techniques and results … Continue reading

Posted in Uncategorized | Tagged , , , , , , , , , | Leave a comment

Real v recreational mathematics

A footnote to my report on Persi Diaconis’ lecture on Martin Gardner. Persi challenged us to consider the question: Is there a sharp division between “real” mathematics and “recreational” mathematics, and if so, where does it come? G. H. Hardy clearly thought … Continue reading

Posted in exposition | Tagged , , , , , | Leave a comment

A thrifty algorithm

Two important classical parameters of a permutation group G of degree n are the base size, the smallest size of a collection of points whose pointwise stabiliser is the identity; and the minimal degree, the smallest number of points moved … Continue reading

Posted in exposition, open problems | Tagged , , , , , | 4 Comments

A permutation group challenge, 2

The result in the preceding post can be formulated as follows: A permutation group of degree n = 2k which is transitive on partitions of shape (k,k) but not on ordered partitions of this shape, has a fixed point and is (k−1)-homogeneous … Continue reading

Posted in open problems | Tagged , , | 1 Comment