Tag Archives: G. A. Miller

A small problem

In connection with the research discussion about graphs and groups, I began to wonder which finite groups have the property that any two elements of the same order are conjugate. I thought about this, and got a certain distance, and … Continue reading

Posted in open problems | Tagged , , | 1 Comment

On the Frattini subgroup

I wrote earlier about the Frattini subgroup of a group. It can be defined in either of two ways (as the set of non-generators of a group, the elements which can be dropped from any generating set containing them; or … Continue reading

Posted in doing mathematics, exposition | Tagged , , | 5 Comments