### Top Posts

### Recent comments

- Ian on The symmetric group, 3
- Asghar Moeini on The Traveling Salesman Problem: An Optimization Model
- Peter Cameron on Beginning a career
- Josh Paik on Beginning a career
- David Roberts on Combinatorial Theory

### Blogroll

- Alexander Konovalov
- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- CIRCA tweets digest
- CoDiMa
- Coffee, love, and matrix algebra
- Collecting reality
- Comfortably numbered
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- Kourovka Notebook
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Ratio bound
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- Sylvy's mathsy blog
- SymOmega
- Tangential thoughts
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- Vynmath
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: Fraïssé’s theorem

## Strange Attractors

Barry Mazur wrote a book Imagining numbers:(particularly the square root of minus fifteen), which was intended to convey to non-mathematicians that the act of imagination in mathematics is quite comparable to that in poetry. Specifically, he wants to explain how … Continue reading

Posted in mathematics and ...
Tagged biorders, Fraïssé's theorem, JoAnne Growney, poetry, Sarah Glaz
3 Comments

## Homogeneous Cayley objects, 1

I have a few things to say about this topic. Mainly these are open problems. I plan to start with an introduction, and then talk about the random graph, the Henson graphs, and n-tuples of total orders, and the problems … Continue reading