Top Posts
Recent comments
Blogroll
 Astronomy Picture of the Day
 Azimuth
 British Combinatorial Committee
 Comfortably numbered
 Diamond Geezer
 Exploring East London
 From hill to sea
 Gödel's lost letter and P=NP
 Gil Kalai
 Jane's London
 Jon Awbrey
 Kourovka Notebook
 LMS blogs page
 Log24
 London Algebra Colloquium
 London Reconnections
 MathBlogging
 Micromath
 Neill Cameron
 neverendingbooks
 Noncommutative geometry
 numericana hall of fame
 Ratio bound
 Robert A. Wilson's blog
 Since it is not …
 Spitalfields life
 Sylvy's mathsy blog
 SymOmega
 Terry Tao
 The Aperiodical
 The De Morgan Journal
 The ICA
 The London column
 The Lumber Room
 The matroid union
 Theorem of the day
 Tim Gowers
 XKCD
Find me on the web

Join 664 other followers
Cameron Counts: RSS feeds
Meta
Tag Archives: enhanced power graph
The enhanced power graph is weakly perfect
Earlier this year, I posed a combinatorial problem, a solution to which would imply that, for any finite group G, the enhanced power graph of G is weakly perfect, that is, has clique number equal to chromatic number. Recall that … Continue reading
Posted in doing mathematics
Tagged chromatic number, clique number, enhanced power graph, Euler's totient
19 Comments
Why I’d like to see this solved
I am aware that quite a number of people have been captivated by the problem I posed. So here is the motivation for it, with some additional remarks and commennts. First, to repeat the problem: Problem: Let n be a … Continue reading
Posted in doing mathematics
Tagged chromatic number, enhanced power graph, GruenbergKegel graph
3 Comments
Graphs on groups, 12
One thing I have learned from the project is that the most interesting question about graphs defined on groups is this: given two types of graph defined on a group G, what is the class of groups for which the … Continue reading
Posted in doing mathematics, exposition
Tagged enhanced power graph, independence graph, power graph, rank, supersoluble group
1 Comment
Graphs on groups, 10
The lesson of this post and the next in the series is that the most interesting questions (to me, anyway) are not about the girth of the deep commuting graph but instead about the classes of groups G defined by … Continue reading
Posted in doing mathematics, exposition
Tagged 2Engel group, commuting graph, conjugacy, Dedekind group, enhanced power graph, power graph
Leave a comment
Graphs on groups, 4
Here is a small problem, mixing group theory and number theory, which might appeal to someone. A couple of definitions. The power graph of a group G has an edge from x to y if one is a power of … Continue reading
Graphs on groups, 2
I wrote the long post about this to try to write it out of my system. No luck … I mentioned in that survey that every finite graph is embeddable as induced subgraph in the enhanced power graph, deep commuting … Continue reading
Posted in doing mathematics, mathematics
Tagged commuting graph, enhanced power graph
Leave a comment