### Top Posts

### Recent comments

### Blogroll

- Alexander Konovalov
- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- CIRCA tweets digest
- CoDiMa
- Coffee, love, and matrix algebra
- Comfortably numbered
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- Sylvy's mathsy blog
- SymOmega
- Tangential thoughts
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- Vynmath
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: cycle index

## Oligomorphic Permutation Groups

In 1988, there was an LMS Durham symposium on model theory and groups. I had been developing the theory of oligomorphic permutation groups for some time: these are the permutation groups G on Ω with the property that the number … Continue reading

Posted in books, history
Tagged cycle index, growth rates, Hilbert series, LMS Durham symposium, species
Leave a comment

## Advanced Combinatorics: the St Andrews lectures

Three years ago, when I joined the School of Mathematics and Statistics at the University of St Andrews, it was suggested that I might like to give a final year MMath module on “Advanced Combinatorics”. No compulsion. Well, of course … Continue reading

Posted in Lecture notes
Tagged Catalan numbers, chromatic polynomial, cycle index, doocot principle, enumeration, formal power series, Friendship Theorem, Gaussian coefficients, generalised line graphs, generalised quadrangles, IBIS groups, line graphs, Mathieu groups, matroid, Moebius inversion, orbit-counting lemma, projective planes, root systems, strongly regular graphs, symmetric Sudoku, triangle property, Tutte polynomial, weight enumerator
Leave a comment

## Categorification, step 1

Today at the St Petersburg meeting, Igor Frenkel talked about categorification. He explained that there are five levels (maybe more!) and one has to take certain steps between them; he illustrated with an example, where level 0 was Jacobi’s Triple … Continue reading