Top Posts
Recent comments
- Tony Forbes on I’d like to see this solved
- Luke Pebody on I’d like to see this solved
- Luke Pebody on I’d like to see this solved
- Tony Forbes on I’d like to see this solved
- Peter Cameron on I’d like to see this solved
Blogroll
- Astronomy Picture of the Day
- Azimuth
- British Combinatorial Committee
- Comfortably numbered
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Jane's London
- Jon Awbrey
- Kourovka Notebook
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Ratio bound
- Robert A. Wilson's blog
- Since it is not …
- Spitalfields life
- Sylvy's mathsy blog
- SymOmega
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD
Find me on the web
Cameron Counts: RSS feeds
Meta
Tag Archives: commuting graph
Graphs on groups, 10
The lesson of this post and the next in the series is that the most interesting questions (to me, anyway) are not about the girth of the deep commuting graph but instead about the classes of groups G defined by … Continue reading
Posted in doing mathematics, exposition
Tagged 2-Engel group, commuting graph, conjugacy, Dedekind group, enhanced power graph, power graph
Leave a comment
Graphs on groups, 5
I gave two lectures on this stuff to a new research seminar on Groups and Graphs, run by Vijayakumar Ambat in Kochi, Kerala. The first was an introduction to the hierarchy, the second was about cographs and twin reduction, why … Continue reading
Posted in events, exposition, open problems
Tagged cograph, commuting graph, nilpotent group, perfect graph, power graph
2 Comments
Graphs on groups, 2
I wrote the long post about this to try to write it out of my system. No luck … I mentioned in that survey that every finite graph is embeddable as induced subgraph in the enhanced power graph, deep commuting … Continue reading
Posted in doing mathematics, mathematics
Tagged commuting graph, enhanced power graph
Leave a comment
Induced subgraphs of power and commuting graphs
For those who like thinking about these things, here is a small observation and a few problems. As I have recently discussed, the power graph of a group is perfect. This means that all its induced subgraphs are perfect, and … Continue reading
Perfectness of the power graph
The power graph of a group is the graph whose vertices are the group elements (sometimes the identity is excluded but it doesn’t matter here), in which x and y are joined if one is a power of the other. … Continue reading
Posted in doing mathematics, exposition
Tagged commuting graph, Lovász, partial preorder, perfect graph, power graph
1 Comment
The power graph yet again
Five years ago, I posted a short update on the power graph of a group. Now, finally, the paper resulting from this has appeared on the arXiv; my coauthors are Ghodratollah Aalipour, Saieed Akbari, Reza Nikandish and Farzad Shaveisi. I … Continue reading