Top Posts
Recent comments
Blogroll
- Astronomy Picture of the Day
- Azimuth
- British Combinatorial Committee
- Comfortably numbered
- Diamond Geezer
- Exploring East London
- From hill to sea
- Gödel's lost letter and P=NP
- Gil Kalai
- Jane's London
- Jon Awbrey
- Kourovka Notebook
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Ratio bound
- Robert A. Wilson's blog
- Since it is not …
- Spitalfields life
- Sylvy's mathsy blog
- SymOmega
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The ICA
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD
Find me on the web
-
Join 664 other subscribers
Cameron Counts: RSS feeds
Meta
Tag Archives: chromatic polynomial
Algebraic properties of chromatic polynomials, 2
My paper with Kerri Morgan on algebraic properties of chromatic roots (described here) has just appeared in the Electronic Journal of Combinatorics: you can find it here. I won’t say any more about it, except to pose a challenge which … Continue reading
Posted in open problems, Uncategorized
Tagged algebraic integer, chromatic polynomial, Galois group
2 Comments
Algebraic properties of chromatic roots
It has been a long time coming. I wrote back in 2011 about the work Kerri Morgan and I were doing on algebraic properties of chromatic roots. A paper has just gone on the arXiv. I will just recap here, … Continue reading
Advanced Combinatorics: the St Andrews lectures
Three years ago, when I joined the School of Mathematics and Statistics at the University of St Andrews, it was suggested that I might like to give a final year MMath module on “Advanced Combinatorics”. No compulsion. Well, of course … Continue reading
Posted in Lecture notes
Tagged Catalan numbers, chromatic polynomial, cycle index, doocot principle, enumeration, formal power series, Friendship Theorem, Gaussian coefficients, generalised line graphs, generalised quadrangles, IBIS groups, line graphs, Mathieu groups, matroid, Moebius inversion, orbit-counting lemma, projective planes, root systems, strongly regular graphs, symmetric Sudoku, triangle property, Tutte polynomial, weight enumerator
Leave a comment
Orbital combinatorics
Yesterday I went to Edinburgh to give a colloquium talk about synchronization, including the recent stuff about butterflies. The day before, I had discussed Artur Schäfer’s work with him, and he expressed a hope that if he went to the … Continue reading