### Top Posts

### Recent comments

- Les Green on The combinatorial hierarchy
- Les Green on The combinatorial hierarchy
- Les Green on The combinatorial hierarchy
- David Roberts on Asymptotic group theory, 2
- Peter Cameron on Asymptotic group theory, 5

### Blogroll

- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- Coffee, love, and matrix algebra
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Machines like us
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- SymOmega
- Terry Tao
- The De Morgan Journal
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Tag Archives: base size

## Asymptotic group theory, 1

The conference opened with a talk by Yoav Segev on his construction, with Eliahu Rips and Katrin Tent, of infinite non-split sharply 2-transitive groups. A permutation group is sharply 2-transitive if any pair of distinct elements of the domain can … Continue reading

## A thrifty algorithm

Two important classical parameters of a permutation group G of degree n are the base size, the smallest size of a collection of points whose pointwise stabiliser is the identity; and the minimal degree, the smallest number of points moved … Continue reading

Posted in exposition, open problems
Tagged base size, greedy algorithm, Kenneth Blaha, minimal degree, permutation groups, primitive groups
4 Comments