### Top Posts

### Recent comments

- Yemon Choi on Research integrity
- Robin Chapman on Silence
- Walter Sinclair on Silence
- Peter Cameron on LMS SGM, 2
- Dima on LMS SGM, 2

### Blogroll

- Alexander Konovalov
- Annoying precision
- Astronomy Picture of the Day
- Azimuth
- Bad science
- Bob Walters
- British Combinatorial Committee
- CIRCA tweets digest
- CoDiMa
- Coffee, love, and matrix algebra
- Computational semigroup theory
- DC's Improbable Science
- Diamond Geezer
- Exploring East London
- Gödel's lost letter and P=NP
- Gil Kalai
- Haris Aziz
- Intersections
- Jane's London
- Jon Awbrey
- LMS blogs page
- Log24
- London Algebra Colloquium
- London Reconnections
- Machines like us
- Marie Cameron's blog
- MathBlogging
- Micromath
- Neill Cameron
- neverendingbooks
- Noncommutative geometry
- numericana hall of fame
- Paul Goldberg
- Robert A. Wilson's blog
- Sheila's blog
- Since it is not …
- Spitalfields life
- St Albans midweek lunch
- Stubborn mule
- SymOmega
- Tangential thoughts
- Terry Tao
- The Aperiodical
- The De Morgan Journal
- The London column
- The Lumber Room
- The matroid union
- Theorem of the day
- Tim Gowers
- XKCD

### Find me on the web

### Cameron Counts: RSS feeds

### Meta

# Category Archives: open problems

## Circular repeated-measurements designs

My first paper in a real statistical journal has just been almost accepted (just a bit of re-formatting …) The paper is entitled “On optimality and construction of circular repeated-measurements designs”, the other authors are R. A. Bailey, K. Filipiak, J. Kunert and A. Markiewicz. … Continue reading

## Random orbits on colourings, or nested Markov chains

I promised after reporting Catherine Greenhill’s talk last week that I would advertise this little problem; so here goes. How do we pick a random proper colouring of a graph Γ? There is a simple Markov chain for this, also … Continue reading

Posted in exposition, open problems
Tagged graph colouring, Markov chain, orbits, random walk
Leave a comment

## Projective and polar spaces

I have produced a new edition of my lecture notes on Projective and Polar Spaces and put them with my lecture note collection. I did this because it seems that people still find some use for these notes. According to … Continue reading

Posted in history, open problems, the Web
Tagged Desargues' Theorem, LaTeX, LaTeX picture environment, Pappus' Theorem, plain TeX, polar spaces, projective spaces
3 Comments

## Chains of semigroups

I have written here about the lovely formula for the length of the longest chain of subgroups in the symmetric group Sn: take n, increase it by 50% (rounding up if necessary), subtract the number of ones in the base … Continue reading

## A niggling problem

Preparing my talk for the Research Day, I was reminded of a problem I can’t solve, that has niggled me for many years. Maybe someone else can solve it, or maybe I will be encouraged to do it myself. Here … Continue reading

Posted in open problems
Tagged almost all quasigroups, Latin squares, loops, multiplication groups, quasigroups
Leave a comment

## Bijective proofs

A fourth proof Last month I described three proofs of the formula for the number of ways to choose k objects from a set of n, if repetition is allowed and order is not significant; it is the same as … Continue reading

Posted in exposition, open problems
Tagged bijections, Catalan numbers, Catalan objects, Dima Fon-Der-Flaass, permutations, sampling
Leave a comment

## Three versus four

The title is homage to the Gödel’s Last Letter and P=NP blog, which a week ago had a post entitled Two versus three. At the problem session at the Banff meeting last night, Dugald Macpherson and Andras Pongracz posed various … Continue reading