Category Archives: open problems

unsolved mathematical problems

A small problem

In connection with the research discussion about graphs and groups, I began to wonder which finite groups have the property that any two elements of the same order are conjugate. I thought about this, and got a certain distance, and … Continue reading

Posted in open problems | Tagged , , | Leave a comment

A little problem

In connection with the power graphs of unitary groups, I came across the following little number-theoretic conundrum. Can anyone solve it? Let q be an odd power of 2 (bigger than 2). Show that (q2−q+1)/3 is not a prime power … Continue reading

Posted in open problems | Tagged , , | 3 Comments

A new constant?

This is an appeal for help. Has anyone come across the constant 2.648102…? Here is the background, which connects with my previous posts about graphs on groups. We are interested in the clique number of the power graph of the … Continue reading

Posted in doing mathematics, open problems | Tagged , , | 8 Comments

Graphs on groups, 5

I gave two lectures on this stuff to a new research seminar on Groups and Graphs, run by Vijayakumar Ambat in Kochi, Kerala. The first was an introduction to the hierarchy, the second was about cographs and twin reduction, why … Continue reading

Posted in events, exposition, open problems | Tagged , , , , | 2 Comments

Graphs on groups, 4

Here is a small problem, mixing group theory and number theory, which might appeal to someone. A couple of definitions. The power graph of a group G has an edge from x to y if one is a power of … Continue reading

Posted in open problems | Tagged , , | Leave a comment

Induced subgraphs of power and commuting graphs

For those who like thinking about these things, here is a small observation and a few problems. As I have recently discussed, the power graph of a group is perfect. This means that all its induced subgraphs are perfect, and … Continue reading

Posted in open problems | Tagged , , | 3 Comments

Ramanujan+100

I have just spent the last four days in Kochi, Kerala, at the International Conference on Number Theory and Discrete Mathematics, commemorating Srinivasa Ramanujan, the great Indian mathematician, on the 100th anniversary of his far-too-early death. The conference had perhaps … Continue reading

Posted in doing mathematics, events, open problems | Tagged , , , , | 4 Comments

Oligomorphic groups: topology or geometry?

One perhaps unexpected result of the pandemic is that there is a huge volume of really interesting mathematics flying around the internet at the moment, courtesy of Zoom and other platforms. This week I went to a talk by Joy … Continue reading

Posted in doing mathematics, exposition, open problems | Tagged , , , | 1 Comment

Between Fermat and Mersenne

The following problem came up in something I was doing recently. I have no idea how difficult it is – it looks hard to me – but I would be glad to hear from anyone who knows more than I … Continue reading

Posted in open problems | Tagged , , | 15 Comments

Association schemes for diagonal groups

Sean Eberhard commented on my posts on diagonal groups (see here and here). He is correct; there is an association scheme preserved by the full diagonal group with n factors in the socle; it is non-trivial if n > 2. The details … Continue reading

Posted in open problems | Tagged , , , | 1 Comment