Category Archives: doing mathematics

how is it done?

Graphs on groups, 8

The dark clouds seem to have lifted a bit. Perhaps now, that the last rush of conferences for a while is over, life can return to something like normality … For me the most significant event was the last in … Continue reading

Posted in doing mathematics, events, open problems | Tagged , , | Leave a comment

A new constant?

This is an appeal for help. Has anyone come across the constant 2.648102…? Here is the background, which connects with my previous posts about graphs on groups. We are interested in the clique number of the power graph of the … Continue reading

Posted in doing mathematics, open problems | Tagged , , | 8 Comments

Graphs on groups, 2

I wrote the long post about this to try to write it out of my system. No luck … I mentioned in that survey that every finite graph is embeddable as induced subgraph in the enhanced power graph, deep commuting … Continue reading

Posted in doing mathematics, mathematics | Tagged , | Leave a comment

Ramanujan+100

I have just spent the last four days in Kochi, Kerala, at the International Conference on Number Theory and Discrete Mathematics, commemorating Srinivasa Ramanujan, the great Indian mathematician, on the 100th anniversary of his far-too-early death. The conference had perhaps … Continue reading

Posted in doing mathematics, events, open problems | Tagged , , , , | 4 Comments

Oligomorphic groups: topology or geometry?

One perhaps unexpected result of the pandemic is that there is a huge volume of really interesting mathematics flying around the internet at the moment, courtesy of Zoom and other platforms. This week I went to a talk by Joy … Continue reading

Posted in doing mathematics, exposition, open problems | Tagged , , , | 2 Comments

Graphs defined on groups

Apologies; I have been so busy lately that very little has got written up. Let me try to remedy this with a quick tour through some recent mathematical developments. As some of my posts have hinted, one topic I have … Continue reading

Posted in doing mathematics, exposition | Tagged , , , , , , , , | 2 Comments

A paradox, and where it led

What is the difference between a contradiction and a paradox? A contradiction is a dead end, a sign that the road leads nowhere and you should turn back and take the other road. A paradox, however, is an invitation to … Continue reading

Posted in doing mathematics, exposition | Tagged , , | Leave a comment

Perfectness of the power graph

The power graph of a group is the graph whose vertices are the group elements (sometimes the identity is excluded but it doesn’t matter here), in which x and y are joined if one is a power of the other. … Continue reading

Posted in doing mathematics, exposition | Tagged , , , , | 1 Comment

On the Frattini subgroup

I wrote earlier about the Frattini subgroup of a group. It can be defined in either of two ways (as the set of non-generators of a group, the elements which can be dropped from any generating set containing them; or … Continue reading

Posted in doing mathematics, exposition | Tagged , , | 5 Comments

Surprising fun fact

I have just found a proof of the following. Usual caveat: nobody else has read the proof yet, and I have not carefully checked it. Let G be a finite group. The finite group H will be called an inverse … Continue reading

Posted in doing mathematics | Tagged , | 2 Comments