## Fibonacci numbers, 6

In part 2 of this series, I explained that it was inspired by a conversation with John Conway in Fine Hall, Princeton, in 1996. I’d like to finish off with the second part of that conversation. I understand that some of this is due to Clark Kimberling, and I don’t know how to apportion the credit. But there are some mysteries here.

Recall from part 3 that the ratio of successive Fibonacci numbers tends to the golden ratio α = (1+√5)/2.

Now let us suppose that a growing plant produces leaves, each one a fraction (α−1) of a circle further round the stem than the one before. (This is the phenomenon of phyllotaxis, and various explanations, more or less convincing, have been given for it; I will take it as a given.) We can mark the positions of successive leaves on a circle, with angles (in multiples of 2π) measured from the position of the starting leaf, number 0. So leaf number n appears at angle {nα}, where the curly brackets { } denote the fractional part.

When leaf number n appears, the circle is already divided into n intervals by the preceding leaves; suppose that there are an intervals between the zeroth leaf and the nth, and bn intervals between the nth leaf and the zeroth. Thus, an+bn = n+1.

What can be said about the ordered pairs (an,bn)?

The answer relies on the theory of continued fractions, which I discussed in part 4. The ratios of successive Fibonacci numbers are good rational approximations to α, in a precise sense which implies that the differences between Fnα and Fn+1 alternate in sign but decrease in magnitude as n increases. So, if n = Fk+1, then (an,bn) is equal to (1,n) if k is odd, and is (n,1) if k is even.

So, if we follow the sequence of Fibonacci numbers, then the number 1 bounces from side to side of the ordered pair.

Moreover, the approximation property implies that the only time when an or bn is equal to 1 is when n is a Fibonacci number.

What about other values? The following table gives the first few:

 n an bn 1 1 1 2 1 2 3 3 1 4 2 3 5 1 5 6 5 2 7 3 5 8 8 1 9 5 5 10 2 9 11 9 3 12 5 8 13 1 13 14 10 5 15 5 11 16 15 2 17 9 9 18 3 16 19 15 15 20 8 13 21 21 1 22 13 10 23 5 19 24 20 5 25 11 15

You might like to spend a few minutes spotting patterns in this table before reading on.

In part 2, I explained how the natural numbers can be partitioned into Fibonacci-like sequences indexed by the non-negative integers: the first entry in each sequence is the smallest number which has not previously occurred; the second is obtained from it by applying the “Fibonacci successor function”, and the remaining entries by the usual Fibonacci recurrence. The second row of the table begins 4, 7, 11, 18, …. Now look at the corresponding entries of the table: (2,3), (3,5), (9,3), (3,16), …. This time, it is the number 3 which “bounces” from side to side as we proceed. In the third sequence, 6, 10, 16, …, the number 2 bounces. The table below gives the “bouncing number” t for the nth sequence.

 n t 0 1 1 3 2 2 3 5 4 8 5 5 6 9 7 5 8 10 9 15 10 9

I don’t know what the pattern here is. In 1996, I think, Conway didn’t know either. I am not sure if more is known now. If so, and anyone would like to tell me about it, or write it up, I would be delighted!